Skip to main content

Whiteley Materials Fund

Whiteley Materials Fund

The Ben and Elaine Whiteley Endowment for Materials Research, established in 2007, provides support for materials research in the College of Science. In particular, it provides fellowship support for graduate students to work full-time during the summer in a research laboratory.

Application procedure

Students submit an application to the chair of the chemistry or physics department by March 31. The chairs of the chemistry and physics departments will select one or two recipients and announce the decision before April 15.

Materials should be submitted electronically to Kelly Carter ( with the subject line "Whiteley Materials Fellowship"

Students should submit the following material

  • Personal statement
    Short statement of advocacy why you should be awarded a fellowship
  • Curriculum Vitae
  • Research proposal
    Short description of research plans for Summer
  • Letter of support from advisor
  • Copy of transcript

The selection committee will look for evidence that the applicant will be successful in both research and dissemination of results. A well-written research proposal will articulate the significance of the proposed work (potential for broader impact), explain appropriate background information, and present a clear research plan.

Previous recipients

2022 – Pritha Biswas

Advisor: Janet Tate

Mixed metal oxides

2021 – Mehran Amiri

Advisor: May Nyman

Metal-oxo clusters

2020 – Nicole Quist

Advisor: Oksana Ostroverkhova

Photostability of High-Performance Organic Semiconductors

Nicole Quist is a physics Ph.D. candidate working with Professor Oksana Ostroverkhova. Her work aims to understand pathways of degradation of organic semiconductor molecules under exposure to environmental conditions. Such degradation is currently one of the most important bottlenecks in the wide commercialization of organic (opto)electronic devices such as solar cells, displays and many others. Nicole has been working on quantifying the effects of various local environments and light exposure conditions on the photostability of high-performance technologically important organic molecules and on establishing pathways and conditions under which the degradation could be reversed. The funding supplied by the Whiteley fellowship allowed Nicole to carry out single-molecule-level experiments and directly "observe" how the molecule interacts with light depending on the immediate nanoscale surrounding. This will enable the design of molecular structures with enhanced stability.

2019 – Mitchell Senger

Advisor: Ethan Minot

Carbon Nanotube Photodiodes

Mitchell Senger is a Ph.D. candidate working with Professor Ethan Minot in physics. He is researching photodiodes made from individual suspended carbon nanotubes (CNTs). CNTs are effectively one-dimensional wires for electrons in which the Coulomb interaction between electrons is extraordinarily large. In traditional silicon solar cells, a significant fraction of the photo-excited carrier energy is wasted as heat. In CNTs, however, there is a possibility that energy can be harvested via impact ionization, a process that requires strong electron-electron interactions. Mitchell has been working to identify the ideal conditions for impact ionization to occur in CNT photodiodes. This work contributed a publication in Nano Letters in December 2020. The funding supplied by the Whiteley fellowship allowed Mitchell to build a new optical setup to characterize the optical properties of the CNT photodiodes, and to begin experiments where he tunes the strength of the electron-electron interaction.

2018 – Max Wallace

Advisor: Mas Subramanian

Novel Enigmatic Quantum Phases of Matter

Max Wallace is a Ph.D. candidate working with Professor Mas Subramanian. His research involves fundamental structure - property investigations on various metal oxide and metal alloy systems with the focus of quantum spin liquids, topological insulators, superconductors, and thermoelectric materials. Max, Mas and collaborators have recently published work in Scientific Reports on a newly synthesized honeycomb layered osmium oxide system with electronic/thermal properties that suggest the existence of a quantum spin liquid (QSL) state. Experimental proof of such enigmatic states of matter have not been confirmed. Few proposed systems are known to date. Quantum spin liquids possess characteristics that are desirable for quantum computation. To further establish the possible existence of a QSL state, single crystals of the honeycomb layered osmium oxide system are vital. Max has recently been able to synthesize honeycomb-layered osmium oxide crystals. This summer fellowship will allow him to complete work on this project as well as his Ph.D. thesis.

2017 – Bethany Matthews

Advisor: Janet Tate

Metastable Heterostructural Alloys

Bethany Matthews is an experimental solid-state physicist whose specialty is semiconductor thin films. She works in Janet Tate’s materials physics laboratory and she is a member of the Center for Next-Generation Materials by Design, an Energy Frontier Research Center funded by the Department of Energy. She has recently published a study of metastable (Sn,Ca)Se thin films, which are metastable heterostructural alloys with potential applications in thermoelectrics. She is currently pursuing a related project in nitride-based alloys. The Whiteley Fellowship will allow her to develop her interest in electron microscopy.

2016 – Kristopher Olsen

Advisor: Doug Keszler

Amorphous Metal Thin-Films

Kristopher Olsen is a Ph.D. candidate working with Professor Douglas Keszler. His research involves the design and characterization of new amorphous metal thin films. In contrast to crystalline metal films, amorphous metal thin films lack grain boundaries that can serve as pathways for diffusion of oxygen or other corrosive chemicals. They are also atomically smooth, leading to more uniform electrical and mechanical properties over the area of the film. As a result, they represent potential breakthrough materials in the areas of thin film electronics, microelectromechanical systems (MEMS), and protective coatings. Of particular interest to his work is understanding the relationship between film composition and thermal stability (e.g. crystallization temperature) and oxidation resistance/surface chemistry. This work has led to the development of several new tantalum-based amorphous metals that can withstand temperatures of up to and in excess of 1000 °C while remaining amorphous. This summer fellowship will allow him to complete work on several publications as well as his Ph.D. thesis.

2015 – Lee Aspitarte

Advisor: Ethan Minot

Carbon Nanotubes

Lee Aspitarte is a fourth-year Ph.D. student working with Prof. Ethan Minot. He is studying photocurrent generation in photodiodes fabricated from single carbon nanotubes (CNTs). CNTs are exciting candidates for next-generation solar technology because they undergo Multiple Electron-hole pair Generation (MEG), where carriers excited by a photon with an energy of more than twice the band gap can decay by exciting additional electron-hole pairs. By utilizing MEG, CNT based solar technology could exceed the theoretical limit on solar power conversion efficiency for silicon-based technology, 29%. The research funded by this fellowship will study MEG in CNT photodiodes by manipulating the dielectric environment surrounding the CNT, affecting the electron-electron scattering processes that lead to MEG. The knowledge gained from this study could directly impact design considerations for next-generation high-efficiency MEG-based solar cells.

2014 – Amila Liyanage

Advisor: Mike Lerner

Nanocomposite Materials

Amila Liyanage is a Ph.D. student working with Prof. Lerner. His research involves the development new synthetic approaches to the preparation of nanocomposites, and using those methods to make novel materials. Just like the more familiar and conventional class of materials known as composites, nanocomposites are hybrid materials that contain two or more different parent phases. The difference is that in nanocomposites the constituent components interact at the nanoscale in at least one dimension, which can lead to novel and useful chemical or physical properties. Amila has focused his work on materials containing inorganic layered hosts combined with polymers, dendrimers or organic chelators. A major application for his method and materials development is the generation of new electrode materials for energy storage.

2013 – Michael Paul

Advisor: Yun-Shik Lee

Terahertz Spectroscopy

Michael Paul is a Ph.D. student working with Prof. Lee. His research plan addresses how electronic systems of condensed matter (in particular, semiconductor quantum-wells and graphene) evolve in the presence of strong and short electromagnetic waves of terahertz frequency. Ultrafast dynamics of intraband transitions in solids are relatively unknown to date. Strong terahertz fields interacting with electrons and holes induce motion of the electrons and holes in the picosecond timescale. The research method resolves amplitude and phase information of the carrier dynamics in the time domain. The objective of the research is to manipulate the electron and hole dynamics with strong terahertz pulses to explore field-induced changes in light-matter interactions on a short timescale.

2012 – Wei Wang

Advisor: Doug Keszler

Oxide Electronics

Wei Wang is a Ph.D. candidate working with Prof. Keszler. His research mainly involves developing aqueous solution precursor for depositing oxide electronics. Supported by the Whiteley Fellowship in the summer, he will be studying the promoted dehydration of Al4O3(PO4)2 by thin HfO2 surface layer. He will employ the ChemiSTEM capabilities on the new Titan TEM in Linus Pauling Science Center to compositionally characterize the HfO2/Al4O3(PO4)2 interface, trying to understand why the density of this interface has increased so dramatically and the role that it might be playing in the dehydration process. These experiments will be further supplemented with Medium Energy Ion Scattering studies at Rutgers to corroborate the findings observed with the ChemiSTEM.

2011 – Whitney Shepherd

Advisor: Oksana Ostroverkhova

Organic semiconductors

During the tenure of the Whiteley fellowship, Whitney worked with several classes of materials: benzothiophene (BTBTB) derivatives, anthradithiophene (ADT) derivatives and pentacene derivatives. She did extensive work testing BTBTB for suitability as a host for single-molecule fluorescence experiments, where we would place very small amounts of a material to be studied in the BTBTB and image individual molecules of that active material. When attempting to image individual molecules, it is important that the host material be very clean before the addition of the molecules to image. With our collaborators, she was able to identify a purification method that seems to produce consistently useful material. BTBTB is a particularly interesting host for these experiments because it is an organic semiconductor as well. Often single molecule experiments are conducted in an inert host, which is easy to purify, but limits the processes that can be studied. Being able to image in BTBTB will open up a range of very interesting experiments studying charge transfer on an individual molecule.

2011 – Adeniyi Adenuga

Advisor: Vince Remcho

Functionalization of carbon nanotubes

Adeniyi Adenuga is a third-year Ph.D. candidate in the Chemistry program, working with Prof. Vince Remcho. Adeniyi was supported in the summer of 2010/2011 via the prestigious Whiteley fellowship in materials science/chemistry. Adeniyi is focused on means of modifying surfaces of nanomaterials to enable high selectivity sensing of biomolecules. During the fellowship period, he worked on functionalization of carbon nanotubes (CNTs) as part of a larger effort to build a field effect transistor (FET) biosensor for detection of disease biomarkers for head and neck squamous cell carcinoma (a devastating oral cancer). The fellowship afforded him an excellent opportunity to focus on research alone during the summer session. The preliminary results obtained during the period served as the foundation that we are now building upon to achieve the global aim of a CNT-FET biosensor for cancer cell detection.

2010 – Jason Francis

Advisor: Janet Tate

Electronic materials

Jason Francis worked in Janet Tate’s materials physics laboratory. He is involved in a project to deposit films of chalcogenides for use in solar cells, diodes, and thermoelectric heating and cooling devices. He is well on his way to becoming an expert in pulsed laser deposition of materials and in several structural, optical and transport characterization techniques. He also learned computational skills that allowed him to calculate materials properties via density functional theory. His work in BiCuOSe was the basis of a research collaboration with a SUNY-Binghamton group that does high-energy X-ray research at Brookhaven National Lab.

2010 – Tosapol Maluangnont

Advisor: Mike Lerner

Graphite chemistry

Tosapol's Ph.D. research was on finding new methods to make reduced graphite intercalation compounds and new compounds. This is a major step in our strategy to delaminate graphite into graphene nanolayers by chemical processing. Graphene is a fascinating material with unexpected and unique properties but has been difficult to prepare bulk quantities. The fellowship allowed Tosapol to focus on researching ways to change that, resulting in successful work that formed the basis of one or two papers in research journals.